Effects of chronic abdominal vagal stimulation of small-diameter neurons on brain metabolism and food intake.
نویسندگان
چکیده
BACKGROUND Abdominal bilateral vagal stimulation reduces food intake in animals. However, the classical square wave, mA range current generator is poorly effective to evoke action potentials on A∂ and C neurons that represent the majority of vagal neurons at the abdominal level. OBJECTIVE/HYPOTHESIS METHODS: The current thresholds for pulsons (S2 & S3) and millisecond pulses (S1) required to trigger action potentials were calculated in 5 anaesthetized pigs using single fibre recording. Similar stimulation protocols were compared chronically to sham stimulation in 24 pigs. After two weeks of chronic stimulation, food intake and brain metabolism were investigated. The electrical characteristics and histology of the vagus nerve were also studied. RESULTS S3 stimulation required a lower amount of charges to trigger an action potential. Chronically applied S2 & S3 activated the dorsal vagal complex and increased the metabolism of its afferent cortical structures. They also reduced energy intake together with a reduced ingestion of high fat and high sugar diets. All these effects were not observed for the S1 group. The vagal histology for the S1, S2 and S3 groups was not different from that of the sham. CONCLUSIONS These findings demonstrate that pulsons applied bilaterally on the abdominal vagus reduced food intake as a consequence of the activation of the brainstem and higher-order brain areas.
منابع مشابه
Abdominal vagal mediation of the satiety effects of CCK in rats.
CCK type 1 (CCK1) receptor antagonists differing in blood-brain barrier permeability were used to test the hypothesis that satiety is mediated in part by CCK action at CCK1 receptors on vagal sensory nerves innervating the small intestine. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of N alpha-3-quinolinoyl-D-Glu-N,N-dipentylamide, does not. At dark ons...
متن کاملNesfatin-1 Influences the Excitability of Glucosensing Neurons in the Dorsal Vagal Complex and Inhibits Food Intake
Nesfatin-1 is a recently discovered metabolic peptide hormone that decreases food intake after lateral, third, or fourth brain ventricle; cisterna magna; or paraventricular nucleus (PVN) injection in ad libitum fed rats. Additional micro-injection studies will improve the understanding of how nesfatin-1 acts on the brain and define specific nuclei responsive to nesfatin-1, which will provide in...
متن کاملIncreased food intake and CCK receptor antagonists: beyond abdominal vagal afferents.
THE IDENTIFYING BIOLOGICAL actions of CCK, stimulation of gall bladder contraction (18) and pancreatic enzyme secretion (15), were first detected in extracts of small intestinal mucosa more than 75 years ago. Subsequently, the peptide responsible for these actions was isolated and characterized by Mutt and Jorpes (22). CCK is secreted by small intestinal enteroendocrine cells in response to die...
متن کاملIntermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain
Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...
متن کاملVagus nerve stimulation in the treatment of nervous system disease: a review article
The vagus nerve (VN), the longest cranial nerve and an essential part of the parasympathetic system, connects the central nervous system to respiratory, cardiovascular, immune, gastrointestinal, and endocrine systems and is involved in the maintenance of homeostasis by controlling these systems. Vagus nerve stimulation (VNS) is related to any method that would stimulate the vagal nerve via elec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain stimulation
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2017